Circular Motion

Level 1 Physics

What you need to know

Objectives

- Explain the characteristics of uniform circular motion
- Derive the equation for centripetal acceleration of an object moving in a circle at constant speed
- Understand that centripetal force is not a new type of force
- Understand that centrifugal force does not exist
- Explain and apply the relationship between the speed and the orbital radius of a satellite
- Demonstrate proficiency in solving problems involving apparent weightlessness in a satellite and in an elevator

Essential Questions

- What are the applications of circular motion?
- What is the difference between centripetal and centrifugal force and is centrifugal force real ?
- What forces keep satellites in orbit?
- What evidence is there that a falling apple and an orbiting planet are identical situations?
- How does apparent weight vary during circular motion?

Velocity

Circumference - Distance an object covers in ONE revolution

Period (T) - The time for ONE revolution

$$
v=\frac{\Delta x}{\Delta t}=\frac{2 \pi r}{\mathrm{~T}}
$$

Velocity is NOT constant. The direction always changes at every point along the circle

In Uniform Circular Motion, speed is constant!

Velocity is TANGENT at every point along the circle

Motion in a Circle

Some important facts:

1. Velocity is a VECTOR
2. Vectors have magnitude AND Direction
3. Acceleration is defined as the RATE of CHANGE of VELOCITY!
4. According to Newton's second Law. The acceleration is DIRECTLY proportional to the force. $\mathrm{F}_{\text {net }} \alpha$ acc

What can we conclude?
-If it is moving in a circle, the DIRECTION of the velocity is changing
-If the velocity is changing, we have an acceleration

- Since we are PULLING towards the CENTER of the CIRCLE, we are applying a NET FORCE towards the CENTER.
-Since we have a NET FORCE we MUST have an ACCELERATION.

Centripetal Acceleration

This inward acceleration is defined as the centripetal acceleration. The word centripetal means "Center Seeking"

The magnitude of this acceleration can be described in 2 ways:

$$
a_{c}=\frac{v^{2}}{R}
$$

$$
a_{c}=\frac{4 \pi^{2} R}{\mathrm{~T}^{2}}
$$

U.C.M. and The Laws

Remember N.S.L., the acceleration is directly proportional to the force

Since the acceleration and the force are directly related, the force must ALSO point towards the center. This is called CENTRIPETAL FORCE.

NOTE: The centripetal force is a NET FORCE. It could be represented by one or more forces. So NEVER draw it in an F.B.D.

$$
\Sigma F=m a
$$

$$
a_{c}=\frac{v^{2}}{R}
$$

$$
\Sigma F=m \frac{v^{2}}{R}
$$

$$
F_{c}=\Sigma F=m \frac{v^{2}}{R}
$$

Example

A Ferris wheel with a diameter of 18.0 meters rotates 4 times in 1 minute. a) Calculate the velocity of the Ferris wheel. b) Calculate the centripetal acceleration of the Ferris wheel at a point along the outside. c) Calculate the centripetal force a 40 kg child experiences.

$$
\begin{aligned}
& v_{c}=\frac{2 \pi r}{T}=\frac{2(3.14) 9}{15}=3.77 \mathrm{~m} / \mathrm{s} \\
& a_{c}=\frac{v^{2}}{r} \rightarrow \frac{v^{2}}{9}=1.58 \mathrm{~m} / \mathrm{s} / \mathrm{s} \\
& F_{c}=\frac{m v^{2}}{r} \rightarrow \frac{(40) v^{2}}{9}=63.17 \mathrm{~N} \\
& \text { or } F_{c}=m a_{c} \rightarrow(40)\left(a_{c}\right)=63.17 \mathrm{~N}
\end{aligned}
$$

Centripetal Force and F.B.D's

The centripetal force is ANY force(s) which point toward the CENTER of the CIRCLE.

Turkish twist the ride

Time to Ride!

Centripetal Force and F.B.D's

Rounding a curve

mg
What is the F_{c} ?

Centripetal Force and F.B.D's

The earth in orbit around the sun

The period of one revolution around the Sun is referred to as year, or 365 days 5 hr 48 min 46 sec .

What is the Fc?
Fg

Centripetal Force and F.B.D's

Tether ball

What is the F_{c} ?
Tsin θ

Satellites in Circular Orbit

- What is the force that keeps the satellites in orbit?
- Gravitational pull of the Earth

$$
\Sigma F=F_{c}=G \frac{m M_{E}}{r^{2}}
$$

- To remain in orbit with a fixed radius
- Only ONE SPEED!

$$
\begin{array}{r}
F_{c}=G \frac{\not h M_{E}}{r^{\chi}}=\not h \frac{v^{2}}{\gamma} \quad \text { Solve for v! } \quad v^{2}=\frac{G M_{E}}{r} \\
v=\sqrt{\frac{G M_{E}}{r}}
\end{array}
$$

Problem

- Determine the speed of the Hubble Space Telescope orbiting at a height of 598 km above the earth's surface.

$$
\begin{aligned}
& v=\sqrt{\frac{G M_{E}}{r}} \\
& v=\sqrt{\frac{\left(6.67 \times 10^{-11}\right)\left(5.98 \times 10^{24}\right)}{6.98 \times 10^{6}}} \\
& v=7.56 \times 10^{3} \frac{m}{s}
\end{aligned}
$$

Period of a Satellite

- Time required for ONE orbital revolution

$$
v=\sqrt{\frac{G M_{E}}{r}}
$$

Speed also equals

$$
v=\frac{2 \pi r}{\mathrm{~T}}
$$

Set equations equal to one another and solve for the period

$$
\frac{2 \pi r}{\mathrm{~T}}=\sqrt{\frac{G M_{E}}{r}} \quad \mathrm{~T}=\frac{2 \pi r^{3 / 2}}{\sqrt{G M_{E}}}
$$

Problem

- What is the height H above the earth's surface at which all synchronous satellites (regardless of mass) must be placed in orbit?

